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Abstract

This work proposes a novel selective feature fusion of structural and functional data 
for improved glaucoma detection. The structural data, such as retinal nerve fiber 
layer (RNFL) thickness measurement acquired by scanning laser polarimetry (SLP), is 
fused with the functional visual field (VF) measurement recorded from the standard 
automated perimetry (SAP) test. The proposed selective feature fusion exploits the 
correspondence between structural and functional data obtained over multiple 
sectors. The correlation coeff icients for corresponding structural-function sector 
pairs are used as weights in subsequent feature selection. The sectors are ranked 
according to the correlation coeff icients and the first four highly-ranked sectors are 
retained. Following our prior work, fractal analysis (FA) features for both structural 
and functional data are obtained and fused for each of the selected sectors, respec-
tively. These fused FA features are then used for glaucoma detection. The novelty 
of this work stems from (1) locating structure-functional sectoral correspon-
dence; (2) selecting only a few interesting sector pairs using correlation coeff icient 
between structure-function data; (3) obtaining novel FA features from these pairs; 
and (4) fusing these features for glaucoma detection. Such a method is distinctive-
ly diff erent from other existing methods that exploit structure-function models in 
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that structure-function sectoral correspondences have been weighted and, based 
on such weights, only portions of the sectors are retained for subsequent fusion 
and classification of structural and functional features. For statistical analysis of 
the glaucoma detection results, sensitivity, specificity, and area under receiver 
operating characteristic curve (AUROC) are calculated. Performance comparison is 
obtained with those of existing feature-based techniques such as wavelet-Fourier 
analysis (WFA) and fast-Fourier analysis (FFA). Comparisons of AUROC values show 
that our novel selective feature fusion method for discrimination of glaucomatous 
and ocular normal patients slightly outperforms other existing techniques with 
AUROCs of 0.98, 0.98, and 0.99 for WFA, FFA, and FA, respectively.

Keywords: scanning laser polarimetry (SLP), standard automated perimetry, fusion, 
glaucoma detection, selective fusion, sectoral topographic correspondence, retinal 
nerve fiber layer (RNFL), fractal analysis (FA)

1. Introduction

Glaucoma is a progressive optic neuropathy which causes both structural and 
functional damages on eyes and ultimately leads to blindness.1 Structural damages 
are due to rapid retinal ganglion cell death in the retinal nerve fiber layer (RNFL).2-4 

Functional damage is represented by visual field (VF) loss.5,6 For a complete and 
reliable assessment of glaucomatous damages, it may be useful to consider both 
structural and functional visual impairment. Such a complete assessment may be 
more effective when the relationship between structure and function is known. It 
has been reported that local damage in the optic nerve corresponds to the regions 
of visual loss.7 Such correspondences have been investigated, and models such 
as Hood-Kardon,8 Harwerth,9 Drasdo,10 and Hockey-Stick11 have been proposed. 
The Hood-Kardon model assumes that structural and functional data are linearly 
related. However, this assumption is only true for the peripheral rather than central 
visual field regions. Likewise, different regions may require different slopes or 
strengths. The Harwerth model is based on comparisons of perimetric data with his-
tological data in monkey eyes, and has been validated with human histological data. 
However, the structure-function correspondence in the Harwerth model shows an 
increasing linearity with eccentricities, and yet does not accurately predict unique 
sectoral correspondences. The Drasdo model is a combination of both a linear and a 
non-linear relationship. Visual field sensitivities follow a linear relationship, whereas 
higher sensitivities follow a non-linear relationship. However, the non-linear part of 
the model may not have been well defined for accurate prediction. The Hockey-Stick 
model is a linear model with two different slopes, such as a shallower slope for the 
locations closer to fixation and a steeper slope for all other areas. However, only two 
slopes may not adequately represent the different structure-function relationship 
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of the regions. Overall, improved glaucoma detection based on structure-function 
correspondence has yet to be proven and verified.12-14

Research combining structural and functional data has reported better 
diagnostic power for glaucoma detection compared to using structural or functional 
data alone.15-18 Horn et al. reported better glaucoma classification rates by simple 
addition of the scores from both structural and functional data.19 However, a simple 
summation of structural and functional data in terms of scores cannot be an optimal 
method due to the lack of consideration of the unique structural-function relation-
ship. Bizios et al. claimed 95% accuracy in glaucoma diagnosis by multiplying the 
different sectors for both structural and functional data with specific factors.20 The 
factors were acquired by averaging pattern deviation probability scores based on 
six sectors. However, the authors did not report the AUROC performance metric for 
discriminating glaucoma. 

Recently, Yousefi et al. reported a correlation-based feature subset selection 
where an optimal subset of the features was obtained by ranking all the features 
after concatenating 7 RNFL data points and 54 VF data points.21 The correlation coef-
ficients were measured between 61 individual points and the AUROC performance 
metric was obtained. However, the authors did not consider the unique correspon-
dence between structural and functional data, which may provide an additional 
benefit for improved glaucoma detection.  

In comparison, we propose a novel feature fusion method that exploits unique 
sectoral correspondence between structural and functional data in order to acquire 
better features. The proposed model selects multiple pair-wise sectors based 
on sectoral correspondences between structural and functional data, obtains 
correlation coefficients from pair-wise sectors, and selects the corresponding sec-
tor-pairs based on correlation coefficients, respectively. Finally, fractal analysis (FA) 
features are obtained from structural and functional data for selected sector-pairs 
and used in the subsequent feature fusion step. Our prior study shows the effective-
ness of FA features in glaucoma detection.22

For functional data assessment, the original VF data, which are recorded in a 
circular 2D space with 59 data points, are converted into a 1D vector. For this step, 
the 59 data points are re-arranged with a novel labeling methodology, as discussed 
in a subsequent section. FA features are then extracted from the acquired functional 
data. For structural data assessment, both 1D and 2D RNFL eye-scan data are 
analyzed. For 1D RNFL assessment, a 1D temporal, superior, nasal, inferior, and 
temporal (TSNIT) graph consisting of RNFL thickness measurement data acquired 
by scanning laser polarimetry (SLP) around the parapapillary retina area is used. The 
FA features are extracted from the 1D TSNIT RNFL data. For 2D RNFL assessment, 
we investigate 2D feature-based techniques on specific regions of interest (ROIs) to 
represent glaucomatous damage. These ROIs are obtained around the parapapil-
lary retina area excluding the optic disc. The maximum optic disc size is selected to 
ensure elimination of the optic disc.  
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Finally, selective feature fusion of the results is obtained from joint structural and 
functional analyses. For this task, a novel mapping table is obtained which divides the 
corresponding structural and functional data into ten sectors. Utilizing this mapping 
table, as shall be discussed in a subsequent section, the sector-wise correlation 
coefficients between structural and functional data are obtained. Such coefficients 
indicate the relative strength of correspondence between structural and functional 
data for each sector-pair, and are subsequently used as the global coefficients to 
weigh corresponding structural and functional data to emphasize the areas of sig-
nificance in the sector-pairs. Following this step, only the sector -pairs with greater 
emphasis are retained. Fractal analysis (FA) features are then extracted from the 
selected sector-pairs of both structural and functional data. The FA features from 
structural and functional data are fused and classification performance metrics are 
obtained using the fused FA features for improved glaucoma detection. 

Section 2 discusses a brief background review for functional, structural, and 
fractal analyses, as well as structure-function relationship. The detailed method-
ologies for the proposed techniques are discussed in Section 3. Results and cor-
responding discussion are presented in Section 4, followed by the conclusions in 
Section 5.

2. Background review

2.1. Functional analysis: visual field (VF) test
The VF is the area of space visible to central and peripheral vision in immobile 
eyes.6 The VF test measures visual sensitivity in patients by evaluating their ability 
to detect points of light. Since patients may not recognize VF defects until the 
symptoms or signs of peripheral vision loss are obvious, the VF test can aid early 
detection of such defects. Standard automated perimetry has been widely used 
for testing VF. The VF test uses stationary white light stimuli at fixed locations on 
a white background, gradually increasing their intensity or size until the stimuli 
are perceived. The visibility at the fixed locations is measured using the threshold 
values of various intensities. The test is done one eye at a time and the patient is 
prompted to respond to light sensation. The threshold values are then recorded 
in the decibel (dB) scale, where zero dB denotes the brightest stimulus while the 
greatest dB is the dimmest stimulus.

2.1. Structural analysis: retinal nerve fiber layer (RNFL) assessment 
Scanning laser polarimetry (SLP) is used for assessing RNFL data. SLP assesses 
ocular structure by estimating the thickness of the peripapillary RNFL based on its 
birefringent property.4 When a polarized light reaches the birefringent structure of 
the RNFL, a phase-shift, i.e., light retardation, occurs. The amount of retardation 
is directly proportional to RNFL thickness. Since the retardation can occur at the 
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cornea and lens, not just at the RNFL, proper compensation is necessary. After 
patient-specific compensation is performed, the amount of retardation is calculated 
pixel-wise and displayed in a map of the scanned area.

2.2 Wavelet-Fourier analysis (WFA)
Complete details of the WFA analysis are available elsewhere.23 Briefly, while 
fast-Fourier analysis (FFA) is a good candidate for analyzing non-stationary signals 
such as 1D TSNIT RNFL data, it has one drawback. In transforming to the frequency 
domain, the non-periodic local information is lost. Wavelet analysis (WFA) can 
overcome such a drawback by revealing the hidden aspects, such as breakdown 
points, discontinuities in higher derivatives, and self-similarity.23 One major 
advantage of the WA is that it can perform local analysis, which analyzes a localized 
area of a larger signal using flexible wavelets. A wavelet is a waveform of effectively 
limited duration that has an average value of zero. Comparing wavelets in the WFA 
with the sinusoidal waves of the FFA, wavelets are more irregular and asymmetric 
with limited duration. For many signals, the low-frequency content is the most 
important part, providing the signal its identity. The high-frequency content, on the 
other hand, imparts unique characteristics. Hence, WFA has two filtering processes 
that obtain two different types of coefficients: approximation coefficients and 
detail coefficients. The approximation coefficients are the high-scale, low-frequen-
cy components of the signal. The detail coefficients are the low-scale, high-frequen-
cy components. These two processes constitute so-called wavelet decomposition. 
WFA is performed by applying a discrete-wavelet transform (DWT), resulting in the 
approximation and the detail coefficients.23 A DWT is applied to the approxima-
tion coefficients to produce second-level results that are used in the subsequent 
analysis. The detail coefficients are processed using fast-Fourier transform (FFT) to 
obtain high-frequency information. The DWT and FFT are repeated on pre-deter-
mined scales using the amplitude to maximize performance.

2.3. Fast-Fourier analysis
The discrete Fourier transformation breaks down a statistically varying signal into 
the elements of sinusoids of different frequencies so that it may transform the input 
signal from time-domain to frequency-domain. FFA is useful when the valuable 
information of the signal frequency is intended to be obtained and utilized. Mathe-
matically, the process of FFA is represented by the Fourier transform, which is the 
sum over all time of the input signal, multiplied by a complex exponential.24 In actual 
computer simulation, the Fourier transform is done in a discrete manner, yielding 
discrete Fourier coefficients. The fast-Fourier transform (FFT) is a computationally 
efficient implementation of the DFT that achieves the same results more quickly. 
Using these fast-Fourier coefficients, the composite function is obtained, allowing 
the constituent sinusoidal components of the original signal to be traced. In this 
study, the FFA is applied to the RNFL thickness data obtained from SLP.
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2.4. Fractal analysis (FA)
A fractal is a rough or fragmented geometric object with an infinite nesting of 
structure at all scales. Each fractal is a reduced-size copy of the whole, which 
accounts for localized variation. In fractal analysis, the non-integer fractal 
dimension (FD) represents the quantitative measurement of the fractal object. For 
estimating FD, we use a box-counting (BC) and a multi-fractional Brownian motion 
(mBm) method. The BC method calculates the FD features for each size of the 
boxes by dividing a 2D image into boxes of predetermined size, r, and counting the 
number of the occupied boxes, N, needed to capture the signal values. The resulting 
FD features are the ratios between the logarithmic values of N and 1/r. The mBm 
method calculates the FD features by adopting a continuous Gaussian process that 
measures a Holder exponent. 

2.5. Structure-function relationships
A quantitative model relating structure (RNFL thickness or retinal ganglion cell 
(RGC) counts) and function (visual field sensitivity) is helpful in utilizing both 
structural and functional data for the diagnosis of glaucoma. The Hood-Kardon 
model is based on the linear structure-function relationship and predicts structural 
data (i.e., RNFL thickness) from functional data (i.e., visual field sensitivity). This 
model has shown limited accuracy due to the fact that the linear relationship holds 
for the peripheral visual field, whereas the relationship for the central visual field 
is non-linear. In addition, it has been shown that this model does not perform well 
in subjects with normal eyes. The Hockey-Stick model adopts two different rela-
tionships in two different regions that best describes the structure-function rela-
tionship. The first region involves the area surrounding the macula with a slope of 
0.16, while elsewhere with a slope of 1. This two-line or Hockey-Stick model has 
provided a reasonable fit for all regions with the sharp breakpoint being smoothed 
or avoided. Recently, Yousefi et al. employed the concatenation of structural and 
functional features without consideration of any inherent structure-function rela-
tionship for feature fusion.21 The structural features were obtained from ocular 
coherence tomography (OCT) RNFL thickness measurements, while functional 
features were the threshold values of the VF tests. Next, correlation-based feature 
subset selection (CFS) was used to select a subset of the best performing features 
out of a pool of features. The selected correlation coefficients were used to enhance 
the AUROC performance metric. 

Unlike the models mentioned above, our proposed method considers the inherent 
structure-function relationship in multiple structural and functional regions. We 
obtain the relative importance of these structural-functional region pairs using 
correlation and retain only four pairs of regions for subsequent processing for 
glaucoma diagnosis.
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3. Materials and methods  

Figure 1 shows the overall flowchart of the proposed selective feature fusion method 
using fractal features from structural and functional test measurement data for 
improved glaucoma detection. In this study, we used 154 eyes (77 glaucomatous, 
34 left-eyes, and 44 females; and 77 normal, 35 left eyes, and 51 females). Average 
age for these 154 patients was 57.06 with a standard deviation of 11.82. While 
approximately matched for age, the glaucomatous (mean age of 59.0) and normal 
(mean age of 55.1) patient groups showed a significant age difference (independent 
samples t-test t = -2.13, P = 0.036). We performed a statistical analysis by calculating 
sensitivity, specificity, and AUROC, and then compared the performance of the new 
method against that of existing feature-based techniques such as WFA and FFA. We 
briefly discuss each step in Figure 1.

Fig. 1. Flowchart of a selective feature-based fusion method using fractal features from 
structural and functional test measurement data for glaucoma detection.
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3.1. Functional analysis
The functional analysis begins by labeling the VF sensitivities at each of the 59 
locations (Octopus Perimeter, Normal G2 program, Haag-Streit AG, Koeniz-Berne, 
Switzerland) using a novel labeling methodology. For the labeling methodology, 
all 59 VF points are arranged corresponding to the visual sensitivities into 1D data 
vectors by labeling and regrouping them using the following pre-determined 
labeling indices. Unlike other types of labeling, such as the raster scan method,25 
VF points are labeled clockwise for left eyes and counterclockwise for right eyes. 
This labeling is consistent with the one proposed by Holló et al.26 Figure 2 shows the 
proposed labeling methodology of the 59 VF test points. 

In Figure 2, the labeling starts from the center point and moves to the point that is 
located either at 45° for the left eye or 135° for the right eye. Subsequent points are 
followed clockwise for the left eye and counterclockwise for the right eye. Once the 
labeling is done, all the VF points of a specific patient are obtained in vector form. 
These VF data vectors are stacked together for all the patients.

3.2. Structural analysis
For 2D structural analysis, we obtain a region of interest (ROI) in a real 2D 256 × 128 
RNFL image data as follows. To obtain the best ROIs, we first obtain the square-
shaped boxes that include the areas surrounding the optic disc. The squares that 
include the optic disc are excluded since the features from the optic disc do not 
contain useful information. The resulting outer box size is 95 × 95, while that for the 
inner box is 47 x 47. An example ROIs for a patient is shown in Figure 3. We then 
use the piecewise triangular prism surface area (PTPSA) method for FD feature 
extraction.27,28 

Fig. 2. The proposed labeling of visual field (VF) points in our work.
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3.3. Selective feature-based fusion of 
structural and functional data
In this section, the sector-wise structural 
and functional relationship for selective 
feature fusion for improved glaucoma 
detection is discussed. Figure 4 shows a 
mapping between the 1D 64-point TSNIT 
RNFL data and 59 VF test points in ten sectors 
according to polar angle segmentation.29 In 
order to show an example mapping, the 1st 

RNFL zone (0-70°) is associated with the four 
VF points in the 1st VF sector, as shown in 
Figure 4. Note that while polar angle analysis 
is done in a clock-wise way, the sectors are 
labeled in a counter-clock-wise way due to 
the fact that RNFL defects and VF defects are 
vertically mirrored. To ascertain the degree 
of association between the sectors of the 
1D TSNIT RNFL and VF data, we obtain the 
scatter plots between the 1D TSNIT RNFL 
vs VF data for all 154 patients. We show a 
few out of the ten corresponding sectors in 
Figure 5. On each sector scatter plot, linear 
regression analysis has been performed 
to analyze the association between the 1D 
TSNIT RNFL and VF data. 

Fig. 3. An example of a patient (A) outer box (95 × 95) (B) inner box (47 × 47).

Fig. 4. VF sectors and their correspond-
ing optic disc polar angle sectors.18
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We then compute the degree of association for each sector using Pearson’s 
correlation coefficients. Figure 6 shows the different degrees of association for 
the different sectors. The four sectors with the strongest associations based on 
Pearson’s coefficents are selected. We then discard the information in the other 
sectors and utilize only the 2nd, 3rd, 8th, and 9th sectors that are weighted with the 
global coefficients, as shown in Figure 6. Therefore, we use 40% of the RNFL TSNIT 
and VF data for the rest of this study.

Fig. 5. Examples of scatter plots showing the association between the TSNIT measured by 
SLP and VF measured by SAP in each sector (2nd, 3rd, 8th, and 9th).
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4. Results 

4.1. Functional analysis
Figure 7 shows the VF data points from normal and glaucomatous eyes (right and 
left) for all 154 eyes. As discussed earlier, these VF data points have been labeled 
and plotted separately for comparison purposes. 

Note in Figures 7b, 7d, 7f, and 7h that the right and left eyes in each group (i.e., 
normal and glaucomatous eyes) have similar shapes, respectively. For normal eyes, 
as shown in Figures 7a and 7c, the plots show monotonically decreasing values 
without much variation. However, the shape of glaucomatous eyes has very different 
values than that of normal eyes, as shown in Figures 7 (e) and (g), wherein there are 
considerable irregularities and abrupt changes. Such differences and changes in the 
shape of the VF data points between normal and glaucomatous eyes justify the use 
of feature-based techniques such as FFA, WFA, and FA. 

Fig. 6. Selected global coefficients for 
sectors and their corresponding VF 
sectors.
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Fig. 7. 1D visual field (VF) raw threshold data in dB for normal and glaucoma eyes is plotted 
for the right and left eye separately: (a) normal right eyes; (b) mean value of normal right 
eyes; (c) normal left eyes; (d) mean value of normal left eyes; (e) glaucomatous right eyes; (f ) 
mean value of glaucomatous right eyes; (g) glaucomatous left eyes; (h) mean value of glau-
comatous left eyes. 



Table 1. The comparison of sensitivity, specificity, and AUROC for functional analysis

Methods (Sensitivity/Specificity/AUROC)
(Sensitivity at 80; Sensitivity at 90)

FFA 0.84/0.99/0.87
(0.84; 0.84)

WFA 0.84/0.99/0.87
(0.84; 0.84)

FA (BC + mBm) 0.92/0.99/0.95
(0.92; 0.92)

Table 2. Comparison of AUROC for 1D TSNIT RNFL analysis

Methods (Sensitivity/Specificity/AUROC)
(Sensitivity at 80; Sensitivity at 90)

FFA 0.87/0.93/0.89
(0.87; 0.87)

WFA 0.87/0.93/0.91
(0.87; 0.87)

FA 0.90/0.92/0.91
(0.94; 0.73)

Table 3. AUROC comparison for real 2D RNFL analysis without optic disc

Methods (Sensitivity/Specificity/AUROC)
(Sensitivity at 80; Sensitivity at 90)

FFA 0.92/0.92/0.91
(0.95; 0.92)

WFA 0.88/0.87/0.91
(0.90; 0.81)

FA 0.92/0.90/0.92
(0.95; 0.90)
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Table 1 shows the comparison of sensitivity, specificity, and AUROC for FFA, WFA, 
and FA for VF data analysis for all 154 patients. In Table 1, our fractal analysis (FA) fea-
ture-based technique performs the best among all feature-based techniques with 
corresponding AUROCs for FFA, WFA, and FA being 0.87, 0.87, and 0.95, respectively 
(FFA vs FA, P < 0.05; WFA vs FA, P < 0.05; FFA vs WFA, P < 0.05). The best performance 
of fractal analysis features demonstrates that embedded irregularity in VF data has 
been well characterized. 



Table 4. AUROC comparison of structural, functional data and their selective fusion for raw, 
FFA, WFA, and FA after the cluster-wise multiplication of Pearson’s correlation coefficients

Methods

(Sensitivity/Specificity/AUROC)
(Sensitivity at 80; Sensitivity at 90)

Structural 
(RNFL)

Functional 
(VF)

Fusion of all VF 
and RNFL data

Selective fusion of 
40%
VF and RNFL data

Raw 0.84/0.91/0.94
(0.92; 0.84)

0.78/0.99/0.92
(0.88; 0.79)

0.87/0.97/0.96
(0.92; 0.90)

0.96/0.90/0.98
(0.96; 0.95)

FFA 0.87/0.90/0.94
(0.90; 0.84)

0.78/0.96/0.92
(0.88; 0.79)

0.86/0.99/0.96
(0.96; 0.87)

0.96/0.94/0.98
(0.97; 0.96)

WFA 0.84/0.95/0.94
(0.88; 0.84)

0.84/0.99/0.94
(0.91; 0.86)

0.87/0.94/0.96
(0.94; 0.87)

0.94/0.94/0.98
(0.95; 0.94)

FA 0.81/0.91/0.90
(0.84; 0.81)

0.88/0.95/0.93
(0.88; 0.88)

0.92/0.94/0.98
(0.97; 0.92)

0.91/0.99/0.99
(1.00; 0.95)
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The novel FA technique outperforms other feature-based techniques such as FFA 
and WFA by a margin of 8% in the functional analysis. However, comparison of our 
feature-based results with that of the mean deviation (MD) method suggests that 
the MD method shows an AUROC of 0.98 (does not differ significantly, P > 0.5). 

4.2. Structural analysis
Using FA along with FFA and WFA features for 1D and 2D RNFL structural analyses 
yields the following results. Table 2 compares AUROC for 1D RNFL structural 
analysis, while Table 3 does the same for 2D RNFL structural analysis. We use the 
same PTPSA method for computing FD in this analysis. We then compute the AUROC 
that discriminates between glaucoma and normal patients with selected classifiers 
based on FFA, WFA, and FA features extracted from the ROIs of real 2D RNFL image 
data. Note that both 1D and 2D RNFL data analyses, even with our novel fractal 
features from real 2D RNFL image data, are not comparable to the 0.94 AUROC of 
the standard machine method known as the Nerve Fiber Index (NFI). There may 
be several reasons for this. First, literature review shows that real 2D RNFL images 
may not provide a better representation of glaucoma characteristics than 1D TSNIT 
RNFL. Second, we choose specific ROIs for real 2D analysis as square-shaped when 
the better representation may be circular-shaped. Since separate feature-based 
analyses of VF and RNFL data do not offer better glaucoma detection performance, 
we investigate fusion analysis for these data next.
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4.3. Selective features-based fusion
For comparison, the AUROCs results for structural, functional, and selective feature 
fusion using raw data, FFA, WFA, and FA features are shown in Table 4, respectively. 
Table 4 shows that all simple fusion methods on raw data, FFA, WFA, and FA features 
enhance classification performance. The last column in Table 4 shows that the 
proposed selective fusion method using FA features slightly outperforms all fea-
ture-based and MD methods with an AUROC of 0.99. It should be noted that this 
improvement is obtained with only 40% of VF and RNFL data. It also outperforms 
the simple feature concatenation method (FA (BC + mBm)), whose accuracy is 95% 
(P < 0.05).

5. Discussion

This study indicates the potential efficacy of selective feature fusion of structural 
and functional data for improved glaucoma detection. A novel labeling methodology 
is applied to VF data to obtain the 1D VF data vectors. Sophisticated FA features 
are extracted from both SF and structural RNFL data for selective feature fusion. 
The results in this paper show that the FA feature-based technique effectively 
exploits the shape features from VF data to perform as well or better than other 
feature-based techniques with corresponding AUROCs. 

The efficacy of selective feature fusion of structural and functional data for 
improved glaucoma detection is demonstrated next. The proposed novel selective 
feature fusion exploits the inherent correspondence between RNFL and VF data 
using a lookup-type method. It is shown that selectively choosing 40% of the 
combined RNFL and VF data can effectively capture the inherent correspondence 
for improved glaucoma detection. Statistical analyses show that the proposed 
selective feature fusion method of structural and functional data does as well or 
better than existing WFA and FFA, with AUROCs of 0.98, 0.98, and 0.99, respectively.

Examining the application of shape-based analysis on the visual field data we 
find that the FA analysis outperforms the WFA and FFA by 8%; however, it is not 
superior at discrimination when compared to the MD as measured by visual fields. 
There are several possible reasons as to why our proposed feature-based results 
may not be as good as using the MD method. First, the patient group we studied may 
not reflect enough local variation or randomness in their original VF data (this will 
be considered in a future report). Hence, a global index such as MD performs well, 
whereas local feature-based techniques such as FFA, WFA, or FA may not perform as 
well. Second, even with the novel labeling methodology, the VF data vectors may not 
reflect structural information in the case of the RNFL. Consequently, performance 
may not be comparable. To address this issue, we utilize the topographic corre-
spondence between structural and functional test measurement data to fuse useful 
information from both domains for improved glaucoma detection.
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Yousefi et al.21 has recently published a study combining structure and function 
results. They acquired a total of 61 features: 7 points (6 RNFL sectoral data points 
plus 1 global metric) from structural data and 54 points from functional SAP data. 
Different machine-learning classifiers, such as Bayesian network, are applied to the 
concatenated data. Unlike the simple concatenation of raw structural and functional 
data used as input features in Yousefi et al.,21 the features in this study are combined 
considering inherent structural-functional regional correspondence. Furthermore, 
the current study obtains sophisticated FD from both structural and functional data. 
The authors in Yousefi et al.21 focused on comparing the longitudinal progression of 
glaucoma by obtaining differentials of the time-relapsed data. In comparison, our 
focus in this work has been differentiating between glaucomatous and normal eyes 
by exploiting the inherent structural-functional relationship. Yousefi et al.21 have 
found the correlation coefficients against the discriminating power, thus ranking all 
61 features from highest to lowest. They further conclude that retaining the ten best 
features offers the best AUROC (0.88) for discriminating progressive glaucoma from 
stable patients. In comparison, the proposed selective feature fusion method in this 
study retains four corresponding structure-functional sectors based on the highest 
correlation coefficients that reflect inherent correspondence. This structure-func-
tional correspondence may best exploit the topographic sector-wise relationship of 
the structural and functional data, unlike the work reported in Yousefi et al.21

Glaucoma diagnosis and management are both facilitated and complicated by the 
various structural and functional methods available for ocular evaluation. Obtaining 
and unifying data and cross-confirmation of structural and functional results can 
indeed help to improve diagnostic ability and may have an application in detecting 
progression. In this study, we have developed techniques that can combine retinal 
nerve fiber layer data and visual field data to one unified classifier. It is relatively 
simple to use these shape-based techniques in devices that measure the nerve fiber 
layer. The results in the present and previous studies show that glaucoma diagnosis 
and progression detection can be improved used these methods. Manufactur-
ers could consider applying these methods to the data and produce output that 
may benefit the clinical use of these devices. In our future work, patient-specific 
structure-functional relationship may be exploited for selective feature selection 
rather than group-wise processing, as has been done in this study. Now that 
these methods have been implemented and their potential demonstrated, future 
research will compare them more rigorously using cross-validation methods and 
distinct samples. Furthermore, for improved processing of real 2D structural image 
data, we plan to investigate circular-shaped ROIs that may provide better diagnostic 
capability for glaucoma detection.
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